Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.003
Filtrar
1.
Methods Mol Biol ; 2787: 107-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656485

RESUMO

Genetic diversity refers to the variety of genetic traits within a population or a species. It is an essential aspect of both plant ecology and plant breeding because it contributes to the adaptability, survival, and resilience of populations in changing environments. This chapter outlines a pipeline for estimating genetic diversity statistics from reduced representation or whole genome sequencing data. The pipeline involves obtaining DNA sequence reads, mapping the corresponding reads to a reference genome, calling variants from the alignments, and generating an unbiased estimation of nucleotide diversity and divergence between populations. The pipeline is suitable for single-end Illumina reads and can be adjusted for paired-end reads. The resulting pipeline provides a comprehensive approach for aligning and analyzing sequencing data to estimate genetic diversity.


Assuntos
Variação Genética , Genoma de Planta , Plantas , Plantas/genética , Software , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Genômica/métodos
2.
Methods Mol Biol ; 2787: 123-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656486

RESUMO

Treatment of plants with chemical mutagens results primarily in the production of novel single nucleotide variants. Mutagenesis is a mostly random process and as such plants derived from mutagenesis of different seeds or in vitro material are expected to accumulate different mutations. An important step in the creation of a mutant population for forward or reverse genetics is the choice of treatment conditions (e.g., dosage) such that sufficient mutations accumulate while not adversely affecting propagation of the plant. DNA sequencing provides a quick method to evaluate the effect of different treatment conditions and their effect on the density and spectrum of accumulated mutations. Whole genome sequencing or reduced representation sequencing is carried out followed by mapping to a reference genome and production of a Variant Call Format (VCF) file. We provide here a method for generating a multi-sample VCF from mutagenized plants and describe a new tool to streamline the process of recovering unique induced mutations and determining their possible effect on gene function.


Assuntos
Genoma de Planta , Mutagênese , Mutação , Sementes , Sequenciamento Completo do Genoma , Sementes/genética , Sementes/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Mutagênicos/toxicidade , Mutagênicos/farmacologia , Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Methods Mol Biol ; 2787: 183-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656490

RESUMO

PacBio long-read sequencing is a third-generation technology that generates long reads up to 20 kilobases (kb), unlike short-read sequencing instruments that produce up to 600 bases. Long-read sequencing is particularly advantageous in higher organisms, such as humans and plants, where repetitive regions in the genome are more abundant. The PacBio long-read sequencing uses a single molecule, real-time approach where the SMRT cells contain several zero-mode waveguides (ZMWs). Each ZMW contains a single DNA molecule bound by a DNA polymerase. All ZMWs are flushed with deoxy nucleotides with a fluorophore specific to each nucleotide. As the sequencing proceeds, the detector detects the wavelength of the fluorescence and the nucleotides are read in real-time. This chapter describes the sample and library preparation for PacBio long-read sequencing for grapevine.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Vitis , Vitis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Genoma de Planta
4.
Methods Mol Biol ; 2787: 141-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656487

RESUMO

Induced mutations have been an important tool for plant breeding and functional genomics for more than 80 years. Novel mutations can be induced by treating seed or other plant cells with chemical mutagens or ionizing radiation. The majority of released mutant crop varieties were developed using ionizing radiation. This has been shown to create a variety of different DNA lesions including large (e.g., >=10,000 bps) copy number variations (CNV). Detection of induced DNA lesions from whole genome sequence data is useful for choosing a mutagen dosage prior to committing resources to develop a large mutant population for forward or reverse-genetic screening. Here I provide a method for detecting large induced CNV from mutant plants that utilizes a new tool to streamline the process of obtaining read coverage directly from BAM files, comparing non-mutagenized controls and mutagenized samples, and plotting the results for visual evaluation. Example data is provided from low coverage sequence data from gamma-irradiated vegetatively propagated triploid banana.


Assuntos
Variações do Número de Cópias de DNA , Genoma de Planta , Musa/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênicos , Melhoramento Vegetal/métodos , Análise de Sequência de DNA/métodos
5.
Zhonghua Zhong Liu Za Zhi ; 46(4): 274-284, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644265

RESUMO

In hospital laboratories-developed testing is of great significance for the clinical testing products that has not been approved by the National Medical Product Administration and is urgently needed to meet clinical practice needs. With the development of cancer precision medicine in recent years, comprehensive genomic profiling (CGP) has become an important means and method for the detection of drug targets, precise molecular typing, and immunotherapy biomarkers in cancer patients. However, there is still a lack of unified understanding and consensus on clinical testing standards and application specifications for laboratory-developed testing in the hospitals. The Molecular Pathology Collaboration Group of the Cancer Experts Committee of the Chinese Anti-Cancer Association and the Molecular Pathology Group of the Pathology Branch of the Chinese Medical Association initiated the expert consensus on relevant specifications for analytical validation of CGP next-generation sequencing (NGS) testing in Chinese hospitals. Combined with domestic clinical practice, refer to domestic and foreign literatures, from the background of the laboratory-developed testing, analytical validation scenarios, evaluation indicators and variation ranges, sample types and quantities covered by analytical validation, clinical performance and drug efficacy determination, and site personnel for analytical validation, quality control, inter-laboratory quality evaluation and document management, etc. After the discussion by the expert group, 12 expert consensuses were formed to provide reference for the analytical validation and clinical application of tumor CGP NGS testing in Chinese hospitals, so as to promote the laboratory-developed testing applications in Chinese hospitals.


Assuntos
Consenso , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , China , Genômica/métodos , Medicina de Precisão/métodos , Controle de Qualidade
6.
Zhonghua Fu Chan Ke Za Zhi ; 59(4): 288-298, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38644275

RESUMO

Objective: To explore the related factors influencing the detection rate of mosaic embryo and the pregnancy outcomes of mosaic embryo transfer in preimplantation genetic testing for aneuploidy (PGT-A) based on next generation sequencing (NGS) technology. Methods: A retrospective study was performed to analyze the clinical data of patients in 745 PGT-A cycles from January 2019 to May 2023 at Chongqing Health Center for Women and Children, including 2 850 blastocysts. The biopsy cells were tested using NGS technology, and the embryos were divided into three groups based on the test results, namely euploid embryos, aneuploid embryos and mosaic embryos. The influence of population characteristics and laboratory-related parameters on the detection rate of mosaic embryo were analyzed, and the pregnancy outcomes of 98 mosaic embryo transfer cycles and 486 euploid embryo transfer cycles were compared during the same period, including clinical pregnancy rate and live birth rate. Results: Among the embryos tested (n=2 850), the number and proportion of euploid embryos, aneuploid embryos and mosaic embryos were 1 489 (52.2%, 1 489/2 850), 917 (32.2%, 917/2 850) and 444 (15.6%, 444/2 850), respectively. Among mosaic embryos, 245 (55.2%, 245/444) were segmental mosaic embryos, 118 (26.6%, 118/444) were whole-chromosome mosaic embryos, and 81 (18.2%, 81/444) were complex mosaic embryos. NGS technology was performed in 4 genetic testing institutions and the detection rate of mosaic embryo fluctuated from 13.5% to 27.0%. The distributions of female age, level of anti-Müllerian hormone, PGT-A indications, ovulation-inducing treatments, gonadotropin (Gn) dosage, Gn days, inner cell mass grade, trophectoderm cell grade, genetic testing institutions and developmental stage of blastocyst were significantly different among the three groups (all P<0.05). Multi-factor analysis showed that the trophectoderm cell grade and genetic testing institutions were significantly related to the detection rate of mosaic embryo; compared with the trophectoderm cell graded as A, the detection rate of mosaic embryo was significantly increased in the trophectoderm cell graded as B-(OR=1.59, 95%CI: 1.04-2.44, P=0.033); compared with genetic testing institution a, the detection rate of mosaic embryo was significantly higher (OR=2.89, 95%CI: 2.10-3.98, P<0.001) in the testing institution c. The clinical pregnancy rate and live birth rate with mosaic embryos transfer were significantly lower than those of euploid embryos transfer (clinical pregnancy rate: 51.0% vs 65.2%, P=0.008; live birth rate: 39.4% vs 53.2%, P=0.017). After adjustment for age, PGT-A indications, trophectoderm cell grade and days of embryo culture in vitro, the clinical pregnancy rate and live birth rate with mosaic embryos transfer were significantly lower than those of euploid embryos transfer (clinical pregnancy rate: OR=0.52, 95%CI: 0.32-0.83, P=0.007; live birth rate: OR=0.50, 95%CI: 0.31-0.83, P=0.007). Conclusions: The trophectoderm cell grade and genetic testing institutions are related to the detection rate of mosaic embryo. Compared with euploid embryos transfer, the clinical pregnancy rate and live birth rate with mosaic embryos transfer are significantly reduced. For infertile couple without euploid embryos, transplantable mosaic embryos could be recommended according to the mosaic ratio and mosaic type in genetic counseling to obtain the optimal pregnancy outcome.


Assuntos
Aneuploidia , Blastocisto , Transferência Embrionária , Fertilização In Vitro , Testes Genéticos , Mosaicismo , Resultado da Gravidez , Taxa de Gravidez , Diagnóstico Pré-Implantação , Humanos , Feminino , Gravidez , Transferência Embrionária/métodos , Estudos Retrospectivos , Diagnóstico Pré-Implantação/métodos , Testes Genéticos/métodos , Adulto , Blastocisto/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Nascido Vivo
7.
Gan To Kagaku Ryoho ; 51(4): 368-377, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38644299

RESUMO

Companion diagnostics(CDx)are in vitro diagnostic products that are used to predict the efficacy and adverse effects of therapeutic drugs prior to administration, and are co-developed and co-approved with the therapeutic drugs in principle. In Japan, 40 CDx products have been approved by January 2024, and 39 products are used to determine if therapeutic drugs are applicable for cancer treatment. In the CDx products for cancer treatment, PCR, immunohistochemistry, or in situ hybridization is used to clarify the mutations(point mutations, insertions/deletions, fusions, etc.)in cancer-related genes or the expression levels of cancer-related molecules in the cancer tissues. The results of the analysis determine whether a particular therapeutic drug could be used or not for the treatment of the corresponding patient. Recently, several next-generation sequencing(NGS)-based CDx products have been approved and utilized for cancer treatment. The rise of NGS-based diagnostics has made it possible to comprehensively analyze mutations in many cancer-related genes in a single test and to determine whether each of several therapeutic drugs is applicable to the patient at once. On the other hand, with the increase in the number of CDx products, several regulatory issues have arisen, including an issue related to the co-development of CDx and a therapeutic drug and an issue related to the interchangeable use of CDx products that detect the same mutations of the cancer-related genes. The revision of CDx-related guidance is being considered in Japan and overseas in response to this situation.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/diagnóstico , Japão , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
9.
Arch Virol ; 169(5): 110, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664287

RESUMO

Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5' termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.


Assuntos
Genoma Viral , Micorrizas , Filogenia , Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Micorrizas/genética , Micorrizas/virologia , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Virais/genética , Fases de Leitura Aberta , Sequência de Bases
10.
J Transl Med ; 22(1): 386, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664838

RESUMO

BACKGROUND: Sequencing the mitochondrial genome has been increasingly important for the investigation of primary mitochondrial diseases (PMD) and mitochondrial genetics. To overcome the limitations originating from PCR-based mtDNA enrichment, we set out to develop and evaluate a PCR-independent approach in this study, named Pime-Seq (PCR-independent mtDNA enrichment and next generation Sequencing). RESULTS: By using the optimized mtDNA enrichment procedure, the mtDNA reads ratio reached 88.0 ± 7.9% in the sequencing library when applied on human PBMC samples. We found the variants called by Pime-Seq were highly consistent among technical repeats. To evaluate the accuracy and reliability of this method, we compared Pime-Seq with lrPCR based NGS by performing both methods simultaneously on 45 samples, yielding 1677 concordant variants, as well as 146 discordant variants with low-level heteroplasmic fraction, in which Pime-Seq showed higher reliability. Furthermore, we applied Pime-Seq on 4 samples of PMD patients retrospectively, and successfully detected all the pathogenic mtDNA variants. In addition, we performed a prospective study on 192 apparently healthy pregnant women during prenatal screening, in which Pime-Seq identified pathogenic mtDNA variants in 4 samples, providing extra information for better health monitoring in these cases. CONCLUSIONS: Pime-Seq can obtain highly enriched mtDNA in a PCR-independent manner for high quality and reliable mtDNA deep-sequencing, which provides us an effective and promising tool for detecting mtDNA variants for both clinical and research purposes.


Assuntos
DNA Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Mitocondriais , Reação em Cadeia da Polimerase , Humanos , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Reação em Cadeia da Polimerase/métodos , Doenças Mitocondriais/genética , Doenças Mitocondriais/diagnóstico , Gravidez , Reprodutibilidade dos Testes , Masculino , Adulto
11.
Front Immunol ; 15: 1358306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665910

RESUMO

Background: Targeted and Immunotherapy has emerged as a new first-line treatment for advanced hepatocellular carcinoma (aHCC). To identify the appropriate targeted and immunotherapy, we implemented next generation sequencing (NGS) to provide predictive and prognostic values for aHCC patients. Methods: Pretreatment samples from 127 HCC patients were examined for genomic changes using 680-gene NGS, and PD-L1 expression was detected by immunohistochemistry. Demographic and treatment data were included for analyses of links among treatment outcomes, drug responses, and genetic profiles. A prognostic index model for predicting benefit from treatment was constructed, taking into account of biomarkers, including TP53, TERT, PD-L1, and tumor mutation burden (TMB) as possible independent prognostic factors. Results: The multivariate Cox regression analyses showed that PD-L1≥1% (HR 25.07, 95%CI 1.56 - 403.29, p=0.023), TMB≥5Mb (HR 86.67, 95% CI 4.00 - 1876.48, p=0.004), TERT MU (HR 84.09, 95% CI 5.23 - 1352.70, p=0.002) and TP53 WT (HR 0.01, 95%CI 0.00 - 0.47, p=0.022) were independent risk factors for overall survival (OS), even after adjusting for various confounders. A prognostic nomogram for OS was developed, with an area under the ROC curve of 0.91, 0.85, and 0.98 at 1-, 2-, and 3- year, respectively, and a prognostic index cutoff of 1.2. According to the cutoff value, the patients were divided into the high-risk group (n=29) and low-risk group (n=98). The benefit of targeted and immunotherapy in the low-risk group was not distinguishable according to types of agents. However, treatment of Atezolizumab and Bevacizumab appeared to provide longer OS in the high-risk group (12 months vs 9.2, 9, or 5 months for other treatments, p<0.001). Conclusion: The prognostic model constructed by PD-L1, TMB, TERT, and TP53 can identify aHCC patients who would benefit from targeted and immunotherapy, providing insights for the personalized treatment of HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Sequenciamento de Nucleotídeos em Larga Escala , Imunoterapia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Imunoterapia/métodos , Idoso , Prognóstico , Adulto , Antígeno B7-H1/genética , Terapia de Alvo Molecular , Valor Preditivo dos Testes , Mutação
12.
Virol J ; 21(1): 86, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622686

RESUMO

BACKGROUND: Viruses have notable effects on agroecosystems, wherein they can adversely affect plant health and cause problems (e.g., increased biosecurity risks and economic losses). However, our knowledge of their diversity and interactions with specific host plants in ecosystems remains limited. To enhance our understanding of the roles that viruses play in agroecosystems, comprehensive analyses of the viromes of a wide range of plants are essential. High-throughput sequencing (HTS) techniques are useful for conducting impartial and unbiased investigations of plant viromes, ultimately forming a basis for generating further biological and ecological insights. This study was conducted to thoroughly characterize the viral community dynamics in individual plants. RESULTS: An HTS-based virome analysis in conjunction with proximity sampling and a tripartite network analysis were performed to investigate the viral diversity in chunkung (Cnidium officinale) plants. We identified 61 distinct chunkung plant-associated viruses (27 DNA and 34 RNA viruses) from 21 known genera and 6 unclassified genera in 14 known viral families. Notably, 12 persistent viruses (7 DNA and 5 RNA viruses) were exclusive to dwarfed chunkung plants. The detection of viruses from the families Partitiviridae, Picobirnaviridae, and Spinareoviridae only in the dwarfed plants suggested that they may contribute to the observed dwarfism. The co-infection of chunkung by multiple viruses is indicative of a dynamic and interactive viral ecosystem with significant sequence variability and evidence of recombination. CONCLUSIONS: We revealed the viral community involved in chunkung. Our findings suggest that chunkung serves as a significant reservoir for a variety of plant viruses. Moreover, the co-infection rate of individual plants was unexpectedly high. Future research will need to elucidate the mechanisms enabling several dozen viruses to co-exist in chunkung. Nevertheless, the important insights into the chunkung virome generated in this study may be relevant to developing effective plant viral disease management and control strategies.


Assuntos
Coinfecção , Nanismo , Vírus de Plantas , Vírus de RNA , Humanos , Viroma , Ecossistema , Cnidium/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de Plantas/genética , DNA , Filogenia
13.
Ann Clin Microbiol Antimicrob ; 23(1): 33, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622723

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a major threat to children's health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. METHODS: We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS: mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. CONCLUSIONS: mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.


Assuntos
Antibacterianos , Pneumonia , Humanos , Criança , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala , Carbapenêmicos , Sensibilidade e Especificidade , Líquido da Lavagem Broncoalveolar
14.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622850

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Assuntos
Proteínas Tirosina Quinases , Sarcoma , Feminino , Humanos , Adulto , Proteínas Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas/genética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Ubiquitina Tiolesterase/genética , Proteínas de Transporte Vesicular/genética
15.
Genome Biol ; 25(1): 101, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641647

RESUMO

Many bioinformatics methods seek to reduce reference bias, but no methods exist to comprehensively measure it. Biastools analyzes and categorizes instances of reference bias. It works in various scenarios: when the donor's variants are known and reads are simulated; when donor variants are known and reads are real; and when variants are unknown and reads are real. Using biastools, we observe that more inclusive graph genomes result in fewer biased sites. We find that end-to-end alignment reduces bias at indels relative to local aligners. Finally, we use biastools to characterize how T2T references improve large-scale bias.


Assuntos
Genoma , Genômica , Genômica/métodos , Biologia Computacional , Mutação INDEL , Viés , Análise de Sequência de DNA/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
16.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38603604

RESUMO

MOTIVATION: Whole exome sequencing (WES) has emerged as a powerful tool for genetic research, enabling the collection of a tremendous amount of data about human genetic variation. However, properly identifying which variants are causative of a genetic disease remains an important challenge, often due to the number of variants that need to be screened. Expanding the screening to combinations of variants in two or more genes, as would be required under the oligogenic inheritance model, simply blows this problem out of proportion. RESULTS: We present here the High-throughput oligogenic prioritizer (Hop), a novel prioritization method that uses direct oligogenic information at the variant, gene and gene pair level to detect digenic variant combinations in WES data. This method leverages information from a knowledge graph, together with specialized pathogenicity predictions in order to effectively rank variant combinations based on how likely they are to explain the patient's phenotype. The performance of Hop is evaluated in cross-validation on 36 120 synthetic exomes for training and 14 280 additional synthetic exomes for independent testing. Whereas the known pathogenic variant combinations are found in the top 20 in approximately 60% of the cross-validation exomes, 71% are found in the same ranking range when considering the independent set. These results provide a significant improvement over alternative approaches that depend simply on a monogenic assessment of pathogenicity, including early attempts for digenic ranking using monogenic pathogenicity scores. AVAILABILITY AND IMPLEMENTATION: Hop is available at https://github.com/oligogenic/HOP.


Assuntos
Exoma , Humanos , Sequenciamento do Exoma/métodos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos
17.
Health Secur ; 22(2): 93-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608237

RESUMO

To better identify emerging or reemerging pathogens in patients with difficult-to-diagnose infections, it is important to improve access to advanced molecular testing methods. This is particularly relevant for cases where conventional microbiologic testing has been unable to detect the pathogen and the patient's specimens test negative. To assess the availability and utility of such testing for human clinical specimens, a literature review of published biomedical literature was conducted. From a corpus of more than 4,000 articles, a set of 34 reports was reviewed in detail for data on where the testing was being performed, types of clinical specimens tested, pathogen agnostic techniques and methods used, and results in terms of potential pathogens identified. This review assessed the frequency of advanced molecular testing, such as metagenomic next generation sequencing that has been applied to clinical specimens for supporting clinicians in caring for difficult-to-diagnose patients. Specimen types tested were from cerebrospinal fluid, respiratory secretions, and other body tissues and fluids. Publications included case reports and series, and there were several that involved clinical trials, surveillance studies, research programs, or outbreak situations. Testing identified both known human pathogens (sometimes in new sites) and previously unknown human pathogens. During this review, there were no apparent coordinated efforts identified to develop regional or national reports on emerging or reemerging pathogens. Therefore, development of a coordinated sentinel surveillance system that applies advanced molecular methods to clinical specimens which are negative by conventional microbiological diagnostic testing would provide a foundation for systematic characterization of emerging and underdiagnosed pathogens and contribute to national biodefense strategy goals.


Assuntos
Técnicas de Diagnóstico Molecular , Saúde Pública , Humanos , Surtos de Doenças/prevenção & controle , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
18.
Genome Res ; 34(3): 376-393, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38609186

RESUMO

Exon-intron circRNAs (EIciRNAs) are a circRNA subclass with retained introns. Global features of EIciRNAs remain largely unexplored, mainly owing to the lack of bioinformatic tools. The regulation of intron retention (IR) in EIciRNAs and the associated functionality also require further investigation. We developed a framework, FEICP, which efficiently detected EIciRNAs from high-throughput sequencing (HTS) data. EIciRNAs are distinct from exonic circRNAs (EcircRNAs) in aspects such as with larger length, localization in the nucleus, high tissue specificity, and enrichment mostly in the brain. Deep learning analyses revealed that compared with regular introns, the retained introns of circRNAs (CIRs) are shorter in length, have weaker splice site strength, and have higher GC content. Compared with retained introns in linear RNAs (LIRs), CIRs are more likely to form secondary structures and show greater sequence conservation. CIRs are closer to the 5'-end, whereas LIRs are closer to the 3'-end of transcripts. EIciRNA-generating genes are more actively transcribed and associated with epigenetic marks of gene activation. Computational analyses and genome-wide CRISPR screening revealed that SRSF1 binds to CIRs and inhibits the biogenesis of most EIciRNAs. SRSF1 regulates the biogenesis of EIciLIMK1, which enhances the expression of LIMK1 in cis to boost neuronal differentiation, exemplifying EIciRNA physiological function. Overall, our study has developed the FEICP pipeline to identify EIciRNAs from HTS data, and reveals multiple features of CIRs and EIciRNAs. SRSF1 has been identified to regulate EIciRNA biogenesis. EIciRNAs and the regulation of EIciRNA biogenesis play critical roles in neuronal differentiation.


Assuntos
Éxons , Íntrons , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional/métodos
19.
Genome Res ; 34(3): 454-468, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38627094

RESUMO

Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and show that newer, higher accuracy ONT reads substantially improve assembly quality.


Assuntos
Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Genômica/métodos
20.
Sci Rep ; 14(1): 9000, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637641

RESUMO

Long-read genome sequencing (lrGS) is a promising method in genetic diagnostics. Here we investigate the potential of lrGS to detect a disease-associated chromosomal translocation between 17p13 and the 19 centromere. We constructed two sets of phased and non-phased de novo assemblies; (i) based on lrGS only and (ii) hybrid assemblies combining lrGS with optical mapping using lrGS reads with a median coverage of 34X. Variant calling detected both structural variants (SVs) and small variants and the accuracy of the small variant calling was compared with those called with short-read genome sequencing (srGS). The de novo and hybrid assemblies had high quality and contiguity with N50 of 62.85 Mb, enabling a near telomere to telomere assembly with less than a 100 contigs per haplotype. Notably, we successfully identified the centromeric breakpoint of the translocation. A concordance of 92% was observed when comparing small variant calling between srGS and lrGS. In summary, our findings underscore the remarkable potential of lrGS as a comprehensive and accurate solution for the analysis of SVs and small variants. Thus, lrGS could replace a large battery of genetic tests that were used for the diagnosis of a single symptomatic translocation carrier, highlighting the potential of lrGS in the realm of digital karyotyping.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Translocação Genética , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Bases , Centrômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...